Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diminished exoproteome of Frankia spp. in culture and symbiosis.

Identifieur interne : 000252 ( Main/Exploration ); précédent : 000251; suivant : 000253

Diminished exoproteome of Frankia spp. in culture and symbiosis.

Auteurs : J E Mastronunzio [États-Unis] ; Y. Huang ; D R Benson

Source :

RBID : pubmed:19749056

Descripteurs français

English descriptors

Abstract

Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N(2) fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship.

DOI: 10.1128/AEM.01559-09
PubMed: 19749056
PubMed Central: PMC2772416


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diminished exoproteome of Frankia spp. in culture and symbiosis.</title>
<author>
<name sortKey="Mastronunzio, J E" sort="Mastronunzio, J E" uniqKey="Mastronunzio J" first="J E" last="Mastronunzio">J E Mastronunzio</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Rd., Unit 3125, Storrs, CT 06269, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Rd., Unit 3125, Storrs, CT 06269</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Y" sort="Huang, Y" uniqKey="Huang Y" first="Y" last="Huang">Y. Huang</name>
</author>
<author>
<name sortKey="Benson, D R" sort="Benson, D R" uniqKey="Benson D" first="D R" last="Benson">D R Benson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19749056</idno>
<idno type="pmid">19749056</idno>
<idno type="doi">10.1128/AEM.01559-09</idno>
<idno type="pmc">PMC2772416</idno>
<idno type="wicri:Area/Main/Corpus">000250</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000250</idno>
<idno type="wicri:Area/Main/Curation">000250</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000250</idno>
<idno type="wicri:Area/Main/Exploration">000250</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Diminished exoproteome of Frankia spp. in culture and symbiosis.</title>
<author>
<name sortKey="Mastronunzio, J E" sort="Mastronunzio, J E" uniqKey="Mastronunzio J" first="J E" last="Mastronunzio">J E Mastronunzio</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Rd., Unit 3125, Storrs, CT 06269, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Rd., Unit 3125, Storrs, CT 06269</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Y" sort="Huang, Y" uniqKey="Huang Y" first="Y" last="Huang">Y. Huang</name>
</author>
<author>
<name sortKey="Benson, D R" sort="Benson, D R" uniqKey="Benson D" first="D R" last="Benson">D R Benson</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alnus (microbiology)</term>
<term>Bacterial Proteins (analysis)</term>
<term>Chromatography, Liquid (MeSH)</term>
<term>Elaeagnaceae (microbiology)</term>
<term>Electrophoresis, Gel, Two-Dimensional (MeSH)</term>
<term>Ferns (microbiology)</term>
<term>Frankia (chemistry)</term>
<term>Frankia (growth & development)</term>
<term>Frankia (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Proteome (analysis)</term>
<term>Symbiosis (MeSH)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alnus (microbiologie)</term>
<term>Chromatographie en phase liquide (MeSH)</term>
<term>Elaeagnaceae (microbiologie)</term>
<term>Fougères (microbiologie)</term>
<term>Frankia (composition chimique)</term>
<term>Frankia (croissance et développement)</term>
<term>Frankia (physiologie)</term>
<term>Protéines bactériennes (analyse)</term>
<term>Protéome (analyse)</term>
<term>Racines de plante (microbiologie)</term>
<term>Spectrométrie de masse en tandem (MeSH)</term>
<term>Symbiose (MeSH)</term>
<term>Électrophorèse bidimensionnelle sur gel (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéines bactériennes</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Frankia</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Frankia</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Frankia</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Frankia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Alnus</term>
<term>Elaeagnaceae</term>
<term>Fougères</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Alnus</term>
<term>Elaeagnaceae</term>
<term>Ferns</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Frankia</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Frankia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Liquid</term>
<term>Electrophoresis, Gel, Two-Dimensional</term>
<term>Symbiosis</term>
<term>Tandem Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase liquide</term>
<term>Spectrométrie de masse en tandem</term>
<term>Symbiose</term>
<term>Électrophorèse bidimensionnelle sur gel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N(2) fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19749056</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>75</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2009</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Diminished exoproteome of Frankia spp. in culture and symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>6721-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01559-09</ELocationID>
<Abstract>
<AbstractText>Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N(2) fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mastronunzio</LastName>
<ForeName>J E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Rd., Unit 3125, Storrs, CT 06269, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Benson</LastName>
<ForeName>D R</ForeName>
<Initials>DR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029661" MajorTopicYN="N">Alnus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031263" MajorTopicYN="N">Elaeagnaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015180" MajorTopicYN="N">Electrophoresis, Gel, Two-Dimensional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029624" MajorTopicYN="N">Ferns</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040161" MajorTopicYN="N">Frankia</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19749056</ArticleId>
<ArticleId IdType="pii">AEM.01559-09</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01559-09</ArticleId>
<ArticleId IdType="pmc">PMC2772416</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Feb;74(2):347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1992 Aug 1;176(2):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1500854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Jul;4(7):1859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1978 Feb 24;199(4331):899-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2009 Mar;30(6):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Sep;7(17):3171-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17676664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Apr;69(4):1884-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Oct;69(10):6348-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Oct;150(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Apr;6(8):2465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16544277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Aug;285(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Jan;5(1):153-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 May;7(10):1702-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17443846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Jul;6(14):4137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16786486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Jun;57(2):320-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Apr;7(4):312-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Oct;4(10):3177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jan;17(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 May;6(10):3008-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16688787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2004 Jun;68(2):207-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15187182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 May;46(5):427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19373972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18226217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1999 Dec;20(18):3551-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10612281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2009;16(1-2):53-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Mar 27;211(4489):1437-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6162199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2003 Oct;24(19-20):3405-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2003 Dec;293(6):391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14760970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18371216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Jun;57(2):293-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2001 Jun;47(6):541-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11467730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Benson, D R" sort="Benson, D R" uniqKey="Benson D" first="D R" last="Benson">D R Benson</name>
<name sortKey="Huang, Y" sort="Huang, Y" uniqKey="Huang Y" first="Y" last="Huang">Y. Huang</name>
</noCountry>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Mastronunzio, J E" sort="Mastronunzio, J E" uniqKey="Mastronunzio J" first="J E" last="Mastronunzio">J E Mastronunzio</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000252 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000252 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19749056
   |texte=   Diminished exoproteome of Frankia spp. in culture and symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19749056" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020